People

Amir Barati Farimani received his Ph.D. in 2015 in Mechanical Science and Engineering from the University of Illinois at Urbana-Champaign. His Ph.D. thesis was titled “Detecting and Sensing Biological Molecules using Nanopores.” He extensively used atomistic simulations to shed light on the DNA sensing and detection physics of biological and solid state nanopores. Right after that, he joined Professor Vijay Pande’s lab at Stanford. During his post-doc, he combined machine learning and molecular dynamics to elucidate the conformational changes of G-Protein Coupled Receptors (GPCRs). He specifically was focused on Mu-Opioid Receptors to elucidate their free energy landscape and their activation mechanism and pathway.

The Barati Farimani’s lab, the Mechanical and Artificial Intelligence laboratory (MAIL), at Carnegie Mellon University is broadly interested in the application of machine learning, data science, and molecular dynamics simulations to health and bio-engineering problems. The lab is inherently a multidisciplinary group bringing together researchers with different backgrounds and interests, including mechanical, computer science, bio-engineering, physics, material, and chemical engineering. The mission is to bring the state-of-the-art machine learning algorithm to mechanical engineering. Traditional mechanical engineering paradigms use only physics-based rules and principles to model the world, which does not include the intrinsic noise/stochastic nature of the system. To this end, the lab is developing the algorithms that can infer, learn, and predict the mechanical systems based on data. These data-driven models incorporate the physics into learning algorithms to build more accurate predictive models. They use multi-scale simulation (CFD, MD, DFT) to generate the data.

Office
4208 Wean Hall
Phone
412.268.1997
Email
barati@cmu.edu
Google Scholar
Amir Barati Farimani
Websites
Mechanical and AI Lab

A new material for water desalination

The Role of AI and Machine Learning in Mechanical Engineering

The intersection of AI & Mechanical Engineering

Education

2015 Ph.D., Mechanical Science and Engineering, University of Illinois at Urbana-Champaign

Media mentions


The Academic Minute

CMU Engineering week on The Academic Minute

August 16 begins Carnegie Mellon Engineering week on National Public Radio’s (NPR) The Academic Minute. Each day, a different professor will discuss interesting facets of their research. The faculty lineup includes: Daniel Armanios, Amir Barati Farimani, Bin He, Destenie Nock, and Larry Pillegi.

Mechanical Engineering

Using deep learning to research material transport in the brain

Understanding the causes of degenerative diseases like Alzheimer's, Huntington's, and Parkinson's will require the meticulous investigation into the complex, branch-like neurite networks of the brain. Machine learning can be an efficient, highly accurate part of this process.

CMU Engineering

Pushing through nanopores: Genetic sequencing with MXene

MXene—a single layer, two-dimensional nanomaterial—shows potential for solid-state, nanopore-based DNA sequencing. This could lead to efficient, rapid diagnostics and personalized medicine.

WIRED

Barati Farimani quoted on predictive drone swarms

MechE’s Amir Barati Farimani was quoted in WIRED about predictively-controlled drone swarms. The drones were able to adjust their trajectory based on how they expect neighboring drones to move, rather than merely reacting to them through a “predictive” algorithm. This represents a step toward a goal of fully-autonomous drone swarms.

CMU Engineering

Order up! AI finds the right material

Amir Barati Farimani has improved an algorithm to predict a material’s properties.

Pittsburgh Health Data Alliance

Jayan and Barati Farimani featured on norovirus project

MechE’s Reeja Jayan and Amir Barati Farimani were featured in the Pittsburgh Health Data Alliance newsletter on their Norovirus Sensor project.

CMU Engineering

CMU and CCDC ARL announce new cooperative agreement

Carnegie Mellon University (CMU) and the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory (ARL) have entered into a $3.5 million cooperative agreement that supports machine learning-enabled additive manufacturing.

the Accelerator

College of Engineering announces Catalyst 2020 winners

The College of Engineering is pleased to announce that the College will fund three Catalyst proposals as winners of the Catalyst 2020 competition.

CMU Engineering

Outsmarting a virus

Can machine learning help us to accelerate the antibody discovery process to fight highly infectious viral diseases like COVID-19 and save thousands of lives?

CMU Engineering

Capturing physiological signals with an app and a tap

For someone suffering from an acute illness or a medical emergency, the nearest healthcare facility can be several hours away in some parts of the world. Researchers are working to bridge this gap in patient care with machine learning.

Popular Mechanics

Barati Farimani develops new water-desalination material

MechE’s Amir Barati Farimani was featured in Popular Mechanics for developing a new material to improve the process of water desalination. The team’s metal organic framework is micro-thin and was shown in simulations to perform water desalination better than the traditional membrane method.

CMU Engineering

A more efficient way to turn saltwater into drinking water

Researchers are working on a way to transform seawater into fresh drinking water with a new, honeycombed-patterned membrane—only a few atoms thick—that uses less energy than existing methods.